Diastereoselective Synthesis of Unsaturated Vicinal Amino Alcohols via Diels-Alder Reactions of N -Sulfinyl Dienophiles

Ravi S. Garigipati, Alan J. Freyer, Robert R. Whittle, and Steven M. Weinreb*
Contribution from the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802. Received January 23, 1984. Revised Manuscript Received May 29, 1984

Abstract

A novel diastereoselective route for the synthesis of α-hydroxy- β, γ-unsaturated amine derivatives is described. The protocol starts with a 3,6 -dihydrothiazine 1 -oxide, which is obtained stereoselectively by a Diels-Alder [4 + 2] cycloaddition of a N-sulfinyl dienophile and a 1,3 -diene of known geometry. Fission of the $\mathrm{S}-\mathrm{N}$ bond of the adduct with a Grignard reagent leads to an allylic sulfoxide which is converted stereoselectively to an allyl alcohol via an allylic sulfoxide/sulfenate ester [2,3]-sigmatropic rearrangement. (E, E)-2,4-Hexadiene (4) and (E, Z)-2,4-hexadiene (7) were stereoselectively transformed to threo amino alcohol (9) and erythro amino alcohol (11), respectively. Intermediates in these transformations have been investigated by ${ }^{1} \mathrm{H}$ NMR experiments. The configuration and conformation of Diels-Alder adduct 5 a have been determined by X-ray crystallography and ${ }^{1} \mathrm{H}$ NMR lanthanide induced shift experiments. A variation of this strategy incorporating intramolecular N-sulfinyl Diels-Alder reactions has been used in total synthesis of the sphingolipid bases erythro- and threo-sphingosine. (E, E)-Diene carbamate 31 was converted to threo-sphingosine (25) in four steps in 52% overall yield. Similarly, (E, Z)-diene carbamate 46 was transformed to erythro-sphingosine (27) in 55% overall yield. Interestingly, the N-sulfinyl compound obtained from (E, Z)-diene carbamate 39 did not cyclize, probably for conformational reasons.

In 1953 Wichterle and Rocek ${ }^{1}$ reported the first example of a Diels-Alder cycloaddition of a N-sulfinyl dienophile 1 ($\mathrm{R}=\mathrm{Ph}$) with a 1,3 -diene to afford a 3,6 -dihydrothiazine 1 -oxide (2) (Scheme I). The same workers also investigated a few simple transformations of these interesting heterocyclic adducts. During the past 30 years relatively little additional research has been reported in this area other than a number of observations that various N -sulfinyl compounds bearing electron-withdrawing groups will undergo the cycloaddition at temperatures generally well below those usually required for "all carbon" Diels-Alder reactions. ${ }^{2}$ Interestingly, N-sulfinyl compounds derived from alkylamines do not react at all as dienophiles.

More recently, Mock and Nugent ${ }^{3}$ investigated the mechanism of the reaction of N-sulfinyl toluenesulfonamide with the three geometric isomers of 2,4 -hexadiene. Based upon an analysis of the relative configurations of the various adducts obtained, it was concluded that these cycloadditions actually proceed stepwise via dipolar intermediates. Configuration at sulfur in the dihydrothiazine oxides was established by ${ }^{1} \mathrm{H}$ NMR lanthanide induced shift experiments and was the first (and to date only) time sulfur stereochemistry had been elucidated in any N -sulfinyl Diels-Alder adduct. ${ }^{2}$ At present virtually nothing is known concerning the factors which control sulfur stereochemistry in this cycloaddition process. ${ }^{4}$

As part of our ongoing interest in synthetic applications of hetero Diels-Alder reactions ${ }^{2 a, 5,6}$ we have recently begun to investigate the synthetic potential of cycloadditions with N-sulfinyl dienophiles. ${ }^{4,7}$ A primary goal of this research program is to develop methodology for stereoselectively generating acyclic nitrogen-

[^0]Scheme I

containing molecules. ${ }^{8}$ Although there has been considerable activity recently in the general area of acyclic diastereoselectivity, ${ }^{9,10}$ relatively little work has been reported on stereocontrolled synthesis of acyclic amines and related functionality. ${ }^{11}$ As outlined in this paper, we have developed a strategy for predictably transforming double bond geometry of a 1,3-diene into relative stereochemistry in an unsaturated vicinal amino alcohol derivative via the intermediacy of a N-sulfinyl Diels-Alder adduct like $2 .{ }^{8}$
We initially decided to test the methodology by using (E, E) and $(E, Z)-2,4$-hexadiene. We also chose to first utilize the previously unknown benzyl N-sulfinylcarbamate (3) ${ }^{12}$ as dienophile since it seemed advisable to develop the procedure using a readily removable nitrogen protecting group. This sulfinyl compound was prepared from benzyl carbamate with thionyl chloride and pyridine and could be distilled before use or employed without purification with essentially identical results.

Addition of 3 to (E, E)-2,4-hexadiene (4) in toluene at room temperature gave a $15 / 1$ mixture of chromatographically separable adducts 5 a and $\mathbf{6 a}$ in 95% combined yield. The stereochemistry
(8) For a preliminary account of a portion of this work, see: Garigipati, R. S.; Weinreb, S. M. J. Am. Chem. Soc. 1983, 105, 4499.
(9) Bartlett, P. A. Tetrahedron 1980, 36, 1.
(10) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. Mukaiyama, T. Org. React. 1982, 28, 203.
(11) Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. Helv. Chim. Acta 1982, 65, 1101. Wang, Y. F.; Izawa, T.; Kobayashi, Ohno, M J. Am. Chem. Soc. 1982, 104, 6465. Parker, K. A.; O’Fee, R. Ibid. 1983, 105, 654. Kohn, H.; Jung, S.-H. Ibid. 1983, 105, 4106. Cardillo, G.; Orena, M. Sandri, S. J. Chem. Soc., Chem. Commun. 1983, 1489.
(12) For preparation and Diels-Alder cycloadditions of related N-sulfinyl carbamates, see: Sommer, S. Synthesis 1977, 305. Horhold, H. H. Angew. Chem., Int. Ed. Engl. 1967, 6, 357. Wucherpfenning, W. Tetrahedron Lett. 1967, 3255. Levchenko, E. S.; Balon, Y. G.; Kirsanov, A. V. Zh. Org. Khim 1967, 3, 1883. Ichimura, K.; Ichikawa, S.; Imamura, K. Bull. Chem. Soc Jpn. 1976, 49, 1157.

of the major adduct $5 \mathrm{5a}$ was unambiguously proven by a singlecrystal X-ray structure determination.

The stereochemical result of this cycloaddition is reversed relative to a similar one reported by Mock and Nugent, ${ }^{3}$ who found that reaction of N-sulfinyl- p-toluenesulfonamide with diene 4 gave approximately a $30 / 1$ mixture of adducts $\mathbf{6 b} / \mathbf{5 b}$, respectively. It should be noted that 5a and 6a do not interconvert under the reaction conditions or thermally, as do $\mathbf{5 b}$ and $\mathbf{6 b}{ }^{3}$

As can be seen from conformational drawing $\mathbf{5 a}^{\prime}$, our major Diels-Alder adduct approximates a twist boat in the crystal. The

5a $^{\prime}$
S-O bond in this adduct is quasi-axial, probably due to an anomeric effect. ${ }^{13}$ The molecule exists as a half-twist boat, rather than as a half-chair, in order to minimize $\mathrm{A}^{1,3}$ strain ${ }^{14}$ between the C-3 methyl and the carbamate group. This boat conformation is probably also favored in solution as indicated by $\mathrm{Eu}(\mathrm{fod})_{3} \mathrm{NMR}$ shift experiments. The relative magnitudes of the downfield shifts observed for various protons are shown in parentheses. Assuming that lanthanide complexation occurs primarily at the sulfinyl oxygen, these shifts seem quite reasonable, although certainly not unambiguous, for the conformation shown in $5 \mathrm{a}^{\prime}$. Mock and Nugent ${ }^{3,15}$ found very similar europium-induced shifts for their minor adduct 5b. However, these workers assigned a boatlike conformation to $\mathbf{5 b}$ in which the sulfinyl oxygen and the two methyl groups are quasi-equatorial. We believe that $\mathbf{5 b}$ probably exists in the same conformation as 5 a so as to satisfy the anomeric effect and to minimize nonbonded interactions. On the basis of X-ray crystal structures and LIS experiments on several other N-sulfinyl ${ }^{16}$ and bis(N-sulfinyl) ${ }^{17}$ dienophile Diels-Alder adducts, we believe that these systems probably all assume conformations in which the sulfur-heteroatom bond is quasi-axial. Thus, we feel that the solution conformations suggested by Mock and Nugent ${ }^{3}$ for the adducts of N-sulfinyl- p-toluenesulfonamide and the isomeric 2,4 -hexadienes might need revision, although their configurational assignments are correct. In the case of minor adduct 6a, it was not possible to establish ring conformation using NMR methods since lanthanide-induced shifts were negligible.

Cycloaddition of N-sulfinyl carbamate 3 with (E, Z)-2,4-hexadiene (7) was relatively slow, but after 40 h at room temperature it was possible to isolate a single Diels-Alder adduct 8 in 57%

[^1]Scheme II

Scheme III

yield. However, the configuration of 8 at sulfur could not be established by LIS NMR techniques, and at present the full stereochemistry of this compound is not known.

Addition of 1.1 equiv of phenylmagnesium bromide at $-60^{\circ} \mathrm{C}$ to the mixture of adducts $5 a$ and $\mathbf{6 a}$, followed by refluxing the crude product with trimethyl phosphite in methanol, afforded an 85% yield of (E)-threo-hydroxy carbamate 9 as the only detectable stereoisomer (Scheme II). Identical results were obtained with purified samples of both adducts 5 a and $\mathbf{6 a}$. The E double bond configuration of 9 was determined from ${ }^{1} \mathrm{H}$ NMR coupling constants ($J=15 \mathrm{~Hz}$). Cyclization of 9 to oxazolone $\mathbf{1 0}$ was effected in high yield with sodium hydride, and the threo configuration was proved by ${ }^{1} \mathrm{H}$ nuclear Overhauser effect difference spectroscopy (NOEDS). Some of the more significant observed percent enhancements are indicated in the drawing (Scheme II).
Similar treatment of adduct 8, derived from (E, Z)-hexadiene, with phenylmagnesium bromide followed by trimethyl phosphite stereospecifically afforded (E)-erythro-hydroxy carbamate 11 (85%). As in the above example, the double bond geometry of 11 was found to be E by ${ }^{1} \mathrm{H}$ NMR ($J=16 \mathrm{~Hz}$). Analysis of the derived oxazolone 12 by NOEDS gave the enhancement shown, which clearly indicated that 11 had the erythro configuration.
We have examined the transformations of 5a/6a and 8 to 9 and 11, respectively, by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Addition of phenylmagnesium bromide to pure major adduct 5a produced a single allylic sulfoxide 13 possessing the expected cis double bond. Although 3,6-dihydrothiazine oxides have been opened with alkoxides and thiophenoxide, no examples of ring cleavages with carbon nucleophiles have previously been described for these systems. ${ }^{18}$ Allylic sulfoxides are known to undergo rapid, reversible [2,3]-sigmatropic rearrangement via an envelope-like transition state to produce sulfenate esters (i.e., 15), which upon treatment with a thiophile afford allylic alcohols. ${ }^{19}$ Thus, if sulfoxide 13 rearranges through an envelope transition state having the methyl substituent at C-6 in a quasi-equatorial position, sulfenate ester 15 results which has the observed E double bond and threo configuration of the final product (Scheme III). Such

[^2]a conformation would minimize unfavorable nonbonded inter actions in the transition state. ${ }^{19}$

When cis-allylic sulfoxide 13 was heated in CDCl_{3} at $50^{\circ} \mathrm{C}$ in an NMR tube, the compound slowly disappared ($t_{1 / 2} \sim 90 \mathrm{~min}$) and a mixture of trans-allylic sulfoxides 19 epimeric at sulfur was formed. Refluxing 19 in methanol containing trimethyl phosphite for several hours cleanly produced allylic alcohol 9 . The transformation of $\mathbf{1 3}$ to the thermodynamically more stable trans isomer 19 is precedented ${ }^{20}$ and likely involves conformational inversion of sulfenate ester 15 to 17 , which undergoes reverse [2,3]-sigmatropic rearrangement to 19 . Not surprisingly, allylic sulfoxide 19 is a mixture of sulfur epimers since the stereochemistry of 13 is lost in 15/17.

Similar results were obtained with the minor Diels-Alder adduct 6a. One interesting difference was that the initial cis-allylic sulfoxide $\mathbf{1 3}$ formed from this adduct was different from the compound derived from the major adduct 5a. We assume that the dihydrothiazine rings of these cycloadducts are opened stereospecifically by the Grignard reagent (probably with inversion ${ }^{21}$) to afford cis-allylic sulfoxides which are epimeric at sulfur. Unfortunately, the configurations of these intermediates are not easily determined. Upon warming in the absence of phosphite, the cis-sulfoxide 13 from the minor Diels-Alder adduct 6a gave the same mixture of trans-allylic sulfoxides 19 as observed in the case of adduct 5a. Thus, it seems from approximate relative rates of reaction that allylic alcohol 9 is probably derived from both sulfoxides 13 and 19 . Clearly, allylic sulfoxide 19 rearranges stereospecifically to 17 via a transition state in which the methyl group on the sulfur-bearing carbon is quasi-equatorial.

In the case of adduct 8 derived from (E, Z)-hexadiene, the initial cis-allylic sulfoxide 14 rearranged more rapidly to the trans isomer $20\left(t_{1 / 2} \sim 30 \mathrm{~min}, \mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}\right)$ than in the above cases. Once again, reaction of pure $\mathbf{2 0}$ with trimethyl phosphite in refluxing methanol cleanly afforded allylic alcohol 11. Thus, a similar sequence of $[2,3]$-sigmatropic rearrangements involving sulfenate ester conformers 16 and 18 must occur in this system.

To further test this methodology, N-sulfinyltoluenesulfonamide (21) ${ }^{22}$ was added to diene 22^{23} to afford dihydrothiazine oxide 23 as a single sulfur stereoisomer (91%). Treatment of $\mathbf{2 3}$ with

phenylmagnesium bromide followed by methanolic trimethyl phosphite gave exclusively the (E)-threo allylic alcohol sulfonamide 24 (85%). The double bond geometry of 24 was proven by ${ }^{1} \mathrm{H}$ NOEDS, which inter alia gave the percent enhancement shown in the drawing. This stereochemistry and double bond configuration are fully consistent with the rearrangement mechanism shown in Scheme III.

We next turned out attention to threo-sphingosine (25) and erythro-sphingosine (27) as seemingly ideal targets for the above

synthetic methodology. These components of sphingolipids have

[^3]been synthesized several times, ${ }^{24}$ but many of the routes to 25 and 27 do not show outstanding stereochemical control. In planning syntheses of the sphingosines, it was apparent that we would have to utilize unsymmetrical 1,4-disubstituted dienes which would probably not show significant regioselectivity in the initial Diels-Alder step. Thus, we investigated the use of intramolecular cycloaddition processes for controlling regiochemistry. No examples of intramolecular N -sulfinyl dienophile Diels-Alder reactions existed previously, but as outlined below, such a strategy can be easily and efficiently executed.

For preparation of threo-sphingosine (25) an (E, E)-diene was required. Accordingly, diene ester 29 was prepared from 1-tetradecanal and trimethyl phosphonocrotonate in 60% yield as a single stereoisomer having the desired configuration. This ester was reduced with lithium aluminum hydride to alcohol $\mathbf{3 0}$ ((85\%),

which on treatment with sodium cyanate $/ \mathrm{TFA}^{25}$ gave carbamate $31(88 \%)$. Reaction of this carbamate with thionyl chloride/ pyridine ($-15^{\circ} \mathrm{C}$ to room temperature) afforded the expected dihydrothiazine oxide 32 as one stereoisomer (85%). Although not isolated, N-sulfinyl carbamate 33 is undoubtedly an intermediate in this transformation. The usual sequence involving phenylmagnesium bromide, followed by trimethyl phosphite in methanol, served to convert adduct 32 stereospecifically to (E)-threo carbamate 34 in 85% yield. As in the above cases, no other stereoisomer was detected here. Saponification of 34 with barium hydroxide yielded racemic threo-sphingosine (25) which was most easily characterized as its triacetyl derivative $\mathbf{2 6}^{26}$

Synthesis of erythro-sphigosine (27) by this methodology required using a 1,4 -disubstituted diene having an E, Z configuration. Two possible diene systems can, in principle, suffice, and we have investigated both. Once again, intramolecular Diels-Alder chemistry was used to control regiochemistry.

The first diene system explored was prepared by using a sequence reported by Takeda and co-workers. ${ }^{27}$ Addition of ethynyl Grignard reagent to 1-tetradecanal gave ethynyl alcohol 35 (70\%) which underwen the Johnson ortho ester Claisen rearrangement to afford a mixture of allenic esters 36 (60\%). This mixture could

be rearranged by using basic alumina as catalyst ${ }^{27}$ to give (E,Z)-diene ester 37 in 60% yield. Reduction of ester 37 with lithium aluminum hydride to diene alcohol 38 and carbamate formation with NaOCN /TFA gave 39 in excellent yield. When this car-

[^4]bamate was treated with thionyl chloride/pyridine, N-sulfinyl carbamate 40 was in fact produced, as evidenced by IR spectroscopy and its rapid hydrolysis back to 39. However, this compound could not be induced to cyclize at any temperature. It is probable that for steric reasons 40 cannot assume the s -cis conformation necessary for cycloaddition.

The alternative (E, Z)-diene was prepared by starting with acetylenic alcohol 41^{28} which upon oxidation with barium manganate ${ }^{29}$ gave aldehyde $\mathbf{4 2}$ in 95% yield. Reaction of this aldehyde with the ylide derived from phosphonium salt 43 , followed by acidic workup, afforded the (E)-enyne alcohol 44 (75%). ${ }^{30}$ Lindlar
(II
$41 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$ $\stackrel{42}{2} \mathrm{R}=\mathrm{CHO}$
$\stackrel{43}{\underline{3}}$

reduction of 44 yielded the desired (E, Z)-diene alcohol 45 (83%), which was transformed to carbamate 46 ($\mathrm{NaOCN} / \mathrm{TFA},{ }^{25} 85 \%$). Treatment of 46 with thionyl chloride/pyridine gave an intermediate N-sulfinyl carbamate which slowly cyclized at room temperature (90 h) to give adduct 47 as a single stereoisomer (86%). Ring cleavage of dihydrothiazine oxide 47 with phenylmagnesium bromide followed by heating the intermediate allylic sulfoxide with trimethyl phosphite in methanol cleanly produced allylic alcohol 48 in 86% yield. Hydrolysis of $\mathbf{4 8}$ with barium hydroxide afforded racemic erythro-sphigosine (27) which was directly compared with naturally derived material ${ }^{31}$ and was further characterized as its triacetyl derivative $\mathbf{2 8} .^{26}$

Thus, we have demonstrated that 1,3 -dienes can be efficiently and predictably transformed to acyclic unsaturated amino alcohol derivatives with complete stereocontrol. This and related methodology ${ }^{17}$ are currently being applied to the synthesis of some complex natural products.

Experimental Section

\boldsymbol{N}-Sulfinylbenzyl Carbamate (3). To a suspension of 5.138 g (0.034 mol) of benzyl carbamate in 80 mL of dry ether at $0^{\circ} \mathrm{C}$ was added 2.5 mL (0.034 mol) of distilled thionyl chloride. To the reaction mixture was added 5.4 mL of dry pyridine via a syringe pump over a period of 1.5 h . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 2 h . The precipitated pyridinium hydrochloride was removed by filtration, and the salt was washed with dry ether. Excess thionyl chloride, pyridine, and solvent were removed in vacuo. The resulting yellow oil was purified by bulb-to-bulb distillation, yielding $4.83 \mathrm{~g}(72 \%)$ of the pale yellow, airsensitive sulfinyl carbamate 3 : bp $75-85^{\circ} \mathrm{C}$ (0.03 torr); IR (film) 1740 (br), $1260,1220,1125 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.25(2 \mathrm{H}, \mathrm{s}), 7.33(5$ H, s).

Phenylmethyl (\mp)-($1 \alpha, 3 \beta, 6 \beta$)-3,6-Dihydro- 3,6-dimethyl-2H-1,2-thiazine-2-carboxylate 1-Oxide (5a) and Phenylmethyl (\mp)-(1B,3B,6B)-3,6-Dihydro-3,6-dimethyl-2H-1,2-thiazine-2-carboxylate 1Oxide ($\mathbf{6 a}$). To a solution of N-sulfinylbenzyl carbamate ($\mathbf{3}, 0.500 \mathrm{~g}, 2.67$ mmol) in anhydrous toluene (3 mL) was added (E, E)-2,4-hexadiene (4 , $0.27 \mathrm{~mL}, 2.43 \mathrm{mmol}$), and the mixture was stirred at room temperature

[^5]for 4 h . The solvent was evaporated in vacuo, and the crude product was purified by flash chromatography ($1 / 1$ ethyl acetate/hexane) to afford $0.607 \mathrm{~g}(89 \%)$ of thiazine oxide 5 a and $0.038 \mathrm{~g}(6 \%)$ of epimeric thiazine oxide 6a.

An analytical sample of 5 a recrystallized from ether/hexane had a melting point of $50-52^{\circ} \mathrm{C}$: IR (film) 3040, 2975, 2925, 1720, 1450, 1380, 1270, 1240, 1200, 1100, 1060, 780, 740, $700640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{dd}, J=7.0,10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=4.27,10.7,1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.28,21.90,48.94,53.82,68.67,118.93,127.80,128.45$, $131.89,135.07,155.59$; mass spectrum m / z (relative intensity) $280(0.2)$, 279 (0.9), 91 (100), 82 (19.5), 67 (12.3); exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} 7^{-}$ $\mathrm{NO}_{3} \mathrm{~S}, 279.0929$, found, 279.0924.

Adduct 6a: oil; IR (film) 3040, 2980, 2930, 1720, 1520, 1450, 1380, $1300,1210,1100,1050,1000,750,720,620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 5.28$ $(\mathrm{s}, 2 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 15.54,22.04,49.33,51.82,68.45,119.06,128.06,128.37$, $128.49,129.88,135.10,153.32$; mass spectrum m / z (relative intensity) $280(0.5), 279(2.7), 91(100), 82(12.6), 67(8.5)$; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}, 279.0929$, found, 279.0922.

Preparation of Adduct 8. A mixture of (E, Z)-2,4-hexadiene (7, 0.35 $\mathrm{mL}, 3.04 \mathrm{mmol}$), N-sulfinylbenzyl carbamate ($3,0.50 \mathrm{~g}, 3.04 \mathrm{mmol}$), and 4 drops of toluene was stirred for 40 h at room temperature. The crude product was purified by flash chromatography ($1 / 1$ ethyl acetate/hexane) to afford $0.402 \mathrm{~g}(57 \%)$ of thiazine oxide 8 as an oil: IR (film) $3040,2975,2925,1720,1500,1450,1380,1290,1270,1120,1090,1050$, $750,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{ABq}$, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{dd}, J=2.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~m}, 1 \mathrm{H}), 7.37$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.48,20.07,49.72,50.87,68.74,121.53$, $127.79,127.92,128.29,128.51,129.03,133.21,135.10,154.50$; mass spectrum m / z (relative intensity) $280(0.45), 279(2.40), 91$ (100), 82 (12.55) $65(4.85)$; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{1} 7 \mathrm{NO}_{3} \mathrm{~S}, 279.0929$, found, 279.0915.

Phenylmethyl (干)-(1S* $\mathbf{2 S}^{*}, \mathbf{3 E}$)-(2-Hydroxy-1-methyl-3-pentenyl)carbamate (9). A solution of 3 M phenylmagnesium bromide in ether $(0.35 \mathrm{~mL}, 1.00 \mathrm{mmol})$ was added to a solution of thiazine oxide $5 \mathrm{a}(0.255$ $\mathrm{g}, 0.913 \mathrm{mmol})$ in anhydrous THF (6 mL) at $-60^{\circ} \mathrm{C}$. The mixture was stirred for 10 min and was diluted with 15 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ether $(3 \times 10 \mathrm{~mL})$, washed with brine ($2 \times 10 \mathrm{~mL}$) and dried. Concentration of the organic phase in vacuo yielded cis-allylic sulfoxide 13, which was used directly in the next step. A sample of 13 was purified by preparative TLC (1/3 ethyl acetate/hexane): IR (film) 3300, 3060, 3040, 2975, 2925, 1710, 1530, $1420,1240,1170,1040,1000,740,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}) 5.13(\mathrm{ABq}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.32(\mathrm{~m}, 2 \mathrm{H}), 5.60$ (dd, $J=6.0,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{~m}, 5 \mathrm{H})$.

To a solution of crude allylic sulfoxide $13(0.325 \mathrm{~g}, 1.00 \mathrm{mmol})$ in 15 mL of methanol was added trimethyl phosphite ($0.16 \mathrm{~mL}, 1.36 \mathrm{mmol}$), and the mixture was heated at $50^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated in vacuo, and the crude product was purified by preparative TLC ($1 / 1$ ethyl acetate/hexane) to yield 0.193 g of allylic alcohol 9 as a colorless oil (85% from 5a): IR (film) $3375,3050,2975,2925,2875$, 1700, 1520, 1450, 1340, 1240, 1100, 1050, 970, 930, 780, 740, 700, 610 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.68$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H})$, $5.08(\mathrm{~s}, 2 \mathrm{H}), 5.48$ (qdd, $J=1.5,7.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (qd, $J=6.1$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.46,17.62,51.27$, $66.58,75.37,127.87,127.93,128.36,128.67,130.59,136.48,156.43 ; \mathrm{CI}$ MS $((\mathrm{M}+1) / z) 251,250,233$.

Phenylmethyl (\mp)-($1 R^{*}, 2 S^{*}, \mathbf{3 E}$)-(2-Hydroxyl-1-methyl-3-pentenyl)carbamate (11). The allylic alcohol 11 was prepared from adduct 8 in 85% yield by the procedure described above for alcohol 9 . The crude product was purified by preparative TLC ($1 / 1$ ethyl acetate/hexane): oil; IR (film) $3425,3325,3075,3050,2980,2940,1700,1520,1450$, $1320,1240,1100,1050,970,780,740,700,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64(\mathrm{~d}, J=6.78 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=1.5,6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.56(\mathrm{brs}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 5.45$ (qdd, $J=1.5,6.5,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.21,17.77,51.43,66.75,75.18,128.07,128.49,128.69$, $129.60,136.41,156.37$; CI MS $((\mathrm{M}+1) / z) 251,250,233$.
(干)-[4 $(E), 5 \beta]-5-M e t h y 1-4-(1-p r o p e n y l)-2-o x a z o l i d i n o n e ~(10) . ~ T o ~ a ~$ solution of allylic alcohol $9(0.292 \mathrm{~g}, 1.17 \mathrm{mmol})$ in dry glyme $(6 \mathrm{~mL})$ was added sodium hydride ($0.073 \mathrm{~g}, 50 \%$ in mineral oil, 1.52 mmol), and the mixture was stirred for 2 h . The reaction mixture was carefully diluted with water, extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and washed with brine $(2 \times 10 \mathrm{~mL})$. The organic phase was dried and concentrated
in vacuo. Purification of the crude product by preparative TLC ($1 / 1$ ethyl acetate/hexane) yielded the oxazolone $10(0.155 \mathrm{~g}, 94 \%)$. An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane had a melting point of $55-57^{\circ} \mathrm{C}$: IR (KBr) $3300,2975,2925,1760,1390,1240,1000 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.76(\mathrm{dd}, J$ $=1.39,6.56 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ $(\mathrm{m}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.65,19.22,54.17,85.03$, 126.84, 132.31, 159.39 ; mass spectrum m / z (relative intensity) 141 (8.6), 101 (1.8), 86 (8.4), 84 (12.5), 71 (100), 49 (19.5). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 59.55 ; \mathrm{H}, 7.85$. Found: C, $59.47 ; \mathrm{H}, 7.87$.
(干)-[4 $(E), 5 \alpha]-5$-Methyl-4-(1-propenyl)-2-oxazolidinone (12). Oxazolone 12 was prepared from allylic alcohol 11 in 88% yield by the procedure described above for oxazolone 10. The crude product was purified by preparative TLC ($1 / 1$ ethyl acetate/hexane). An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane had a melting point of $79-80$ ${ }^{\circ} \mathrm{C}$: IR (film) $3300,2975,2925,1760,1560,1410,1380,1290,1230$, $1110,1000,975,940,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.12(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{dd}, J=1.5,7.10 \mathrm{~Hz}, 3 \mathrm{H}), 3.92$ (quintet, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(1, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{qdd}, J=1.5,8.1,15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.90,17.80,51.63,80.96$, $123.86,132.91,159.35$; mass spectrum m / z (relative intensity) 141 (16.9), 128 (8.9), 127 (21.9), 101 (10.4), 98 (30.6), 92 (10.2), 91 (100) Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 59.55 ; \mathrm{H}, 7.85$. Found: $\mathrm{C}, 59.73 ; \mathrm{H}$, 7.87.

Diels-Alder Reaction of Diene 22. To an ice-cold solution of N -sulfinyl-p-toluenesulfonamide ($21,1.22 \mathrm{~g}, 5.63 \mathrm{mmol}$) in anhydrous toluene (20 mL) was added diene 22 in toluene (10 mL). The mixture was stirred for 4 h at room temperature, and the solvent was evaporated in vacuo. Purification of the crude product by flash chromatography yielded adduct $23(1.94 \mathrm{~g}, 91 \%)$ as a colorless oil: IR (film) 3100,3075 , $3025,2975,2925,2875,1600,1500,1450,1350,1160,1140,1110,1080$, $990,930,890,840,810,790,710,700,680,660,620,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.40$ (ABq, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.36(\mathrm{~m}$, $7 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.09,21.50$, $21.62,54.35,55.39,72.74,72.86,120.61,125.38,126.28,127.04,127.54$, $128.23,129.51,129.84,137.16,137.81,144.44$; CI MS $((\mathrm{M}+1) / z) 421$, 420.

Preparation of Alcohol 24. The allylic alcohol 24 was prepared from adduct $\mathbf{2 3}$ in 85% yield by the procedure described above for preparation of alcohol 9. The product was purified by TLC (20% ethyl acetate/ hexane): IR (film) $3500,3375,3300,3075,3050,2925,2850,1600$, $1500,1460,1410,1330,1210,1160,1100,1030,940,820,740,700,760$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.15$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ABq}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.10,12.95,21.38,38.08,54.73,70.73,73.48$, $121.74,127.09,127.67,127.80,128.35,129.37,133.32,137.37,137.62$, 143.14; CI MS $((\mathrm{M}+1) / z) 392,391,390,373,372,338,337$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}$: $\mathrm{C}, 64.75 ; \mathrm{H}, 6.99$. Found: $\mathrm{C}, 64.67 ; \mathrm{H}, 7.05$.

Methyl Octadeca-2 $(\boldsymbol{E}), 4(\boldsymbol{E})$-dien-1-oate (29). To a solution of diisopropylamine ($1.10 \mathrm{~mL}, 7.91 \mathrm{mmol}$) in anhydrous THF (2 mL) at -40 ${ }^{\circ} \mathrm{C}$ was added a soluton of $1.6 \mathrm{M} n$-butyllithium in hexane ($4.35 \mathrm{~mL}, 7.25$ mmol) and the mixture was stirred for 20 min . Trimethyl 4phosphonocrotonate ($1.37 \mathrm{~g}, 6.6 \mathrm{mmol}$) in anhydrous THF (8 mL) was added to the LDA solution at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . To the orange mixture at $-40^{\circ} \mathrm{C}$ was added n-tetradecanal (1.00 $\mathrm{g}, 4.7 \mathrm{mmol})$ in anhydrous THF (10 mL) and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 2 h and at room temperature for 12 h . The reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and was extracted with hexane $(5 \times 30 \mathrm{~mL})$. The organic phase was dried and concentration in vacuo, and the crude product was purified by flash chromatography (5% ethyl acetate/hexane) to yield ester $29(0.83 \mathrm{~g}, 60 \%$) as a low melting solid: IR (film) 3075, 3025, 2925, 2860, 1730, 1640, 1620, $1460,1430,1330,1310,1280,1270,1140,1040,1000,870,720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 20$ $\mathrm{H}), 1.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.78(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~m}, 2 \mathrm{H}) 7.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $14.06,22.34,22.64,28.66,29.16,29.37,29.60,31.53,31.87,32.96,51.34$, $118.61,128.25,144.92,145.35,167.67$; mass spectrum m / z (relative intensity) 296 (1.2), 295 (7.4), 294 (27.9), 293 (0.5), 263 (15.0), 226 (6.4), $220(18.3), 150(12.5), 139(10.6) 111(100)$. Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}: 294.2558$. Found: 294.2531.

Octadeca-2 $(\boldsymbol{E}), 4(\boldsymbol{E})$-dien-1-ol (30). To a suspension of LiAlH_{4} $(0.054 \mathrm{~g}, 1.41 \mathrm{mmol})$ in anhydrous ether (20 mL) was added ester 29 $(0.500 \mathrm{~g}, 1.61 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$, adn the mixture was stirred at room temperature for 4 h . The reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL) and $5 \% \mathrm{NaOH}$ solution (3 mL). The
mixture was filtered, and the filtrate was washed with brine (10 mL). The organic phase was dried and concentrated in vacuo. The crude product was purified by flash chromatography (15% ethyl acetate/hexane) to yield alcohol $30(0.385 \mathrm{~g}, 85 \%)$. An analytical sample recrystallized from hexane had a melting point of $56^{\circ} \mathrm{C}$: IR $\left(\mathrm{CHCl}_{3}\right) 3625$, $2930,2860,1450,1380,990,720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 22 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.10,22.67,29.21,29.35,29.48,29.59,29.65,31.91,32.61$, $63.54,129.29,132.16,135.86$; CI MS ($(\mathrm{M}+1 / z) 250,249$.

Octadeca-2 $(E), 4(E)$-dienyl Carbamate (31). To a solution of oc-tadeca-2E, $4 E$)dien-1-ol ($30,0.380 \mathrm{~g}, 1.42 \mathrm{mmol}$) in ether (10 mL) in a pressure bottle was added sodium cyanate ($0.195 \mathrm{~g}, 2.99 \mathrm{mmol}$) and TFA ($0.22 \mathrm{~mL}, 2.85 \mathrm{mmol}$). ${ }^{25}$ The bottle was sealed, and the mixture was stirred at room temperature for 24 h . The reaction mixture was diluted with ether and was washed with water. The organic phase was dried and concentrated in vacuo. Purification of the crude product by flash chromatography ($1 / 3$ ethyl acetate/hexane) yielded carbamate $31(0.390 \mathrm{~g}$, 88%) as a white solid. An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane had a melting point of $90-91^{\circ} \mathrm{C}$: IR (KBr) 3425,2825 , $2750,1690,1330,1230,1000,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 22 \mathrm{H}), 2.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.58(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~m}$, $1 \mathrm{H}), 6.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.66,29.15,29.33$, $29.47,29.63,31.89,32.62,65.58,124.12,129.05,134.80,136.87,156.69$; mass spectrum m / z (relative intensity) 310 (2.5) 309 (10.3), 266 (4.4), 249 (7.9), 248 (15.9) 211 (8.2), 141 (4.5), 123 (13.5), 121 (10.1). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{2}$: $\mathrm{C}, 73.60 ; \mathrm{H}, 11.06$. Found: $\mathrm{C}, 73.74 ; \mathrm{H}, 11.39$.

Cycloaddition of Carbamate 31, To a solution of carbamate 31 (0.330 $\mathrm{g}, 1.06 \mathrm{mmol}$) and pyridine ($0.52 \mathrm{~mL}, 6.4 \mathrm{mmol}$) in anhydrous toluene (5 mL) at $-15^{\circ} \mathrm{C}$ was added thionyl chloride ($0.12 \mathrm{~mL}, 1.6 \mathrm{mmol}$) in toluene (5 mL) over 90 min . The mixture was stirred for 1 h at $-15^{\circ} \mathrm{C}$ and for 15 h at room temperature. Pyridinium hydrochloride was removed by filtration and the filtrate was evaporated in vacuo. Flash chromatography ($1 / 1$ ethyl acetate/hexane) of the crude product yielded the dihydrothiazine oxide 32 as a white crystalline solid ($0.320 \mathrm{~g}, 85 \%$). An analytical sample was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane: mp $102-103^{\circ} \mathrm{C}$; IR (KBr) 2940, 2860, 1770, 1480, 1405, 1210, 1110, 1090, $1070,1050,790,770,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 20 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}$, $1 \mathrm{H}), 4.22$ (dd, $J=8.10,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}) 4.76(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{td}, J=3.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{td}, J=2.5,9.7 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.66,26.65,28.90,29.22,29.30,29.45$, $29.60,31.89,52.68,60.17,69.27,127.76,129.23,155.07$; CI MS ((M $+1) / z) 357,356$. Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NSO}_{3}: \mathrm{C}, 64.18 ; \mathrm{H}, 9.35$. Found: C, 63.87; H, 9.45.
(干)-[$\left.\boldsymbol{R}^{*}, \boldsymbol{S}^{*}-(E)\right]$-4-(1-Hydroxy-2-hexadecenyl)-2-oxazolidinone (34). A solution of 3 M phenylmagnesium bromide in ether ($0.23 \mathrm{~mL}, 0.66$ $\mathrm{mmol})$ was added to a solution of dihydrothiazine oxide $32(0.183 \mathrm{~g}$, $0.513 \mathrm{mmol})$ in anhydrous THF (5 mL) at $-60^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min at $-60^{\circ} \mathrm{C}$. The reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and was extracted with ether $(3 \times 10 \mathrm{~mL})$. The extract was washed with brine $(2 \times 10 \mathrm{~mL})$, dried, and concentrated in vacuo. The crude sulfoxide was used directly in the next step. IR (film) $3275,3050,2925,2850,1760,1470,1440,1400,1320,1090,1040$, $970,930,750,690 \mathrm{~cm}^{-1}$.

To a solution of the above crude sulfoxide ($0.200 \mathrm{~g}, 0.46 \mathrm{mmol}$) in dry methanol (30 mL) was added trimethyl phosphite ($0.2 \mathrm{~mL}, 0.92 \mathrm{mmol}$), and the mixture was heated at $50^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was evaporated in vacuo, and the crude product was purified by flash chromatography ($1 / 1$ ethyl acetate/hexane) to afford $0.142 \mathrm{~g}(85 \%)$ of 34 as a white solid. An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane had a melting point of $100-101^{\circ} \mathrm{C}$. IR (KBr) $3450,3250,2850$, $1730,1470,1250,1020,970,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}), 1.26(\mathrm{~s}, 22 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=5.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.35 (dd, $J=7.3,15.2 \mathrm{~Hz}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.09,22.67,28.95,29.18,29.33,29.44,29.59,29.65,31.91$, $32.33,56.79,66.66,75.01,127.08,136.83,159.81$; mass spectrum m / z (relative intensity) $326\left[\mathrm{M}^{+}+1\right](0.3), 325\left[\mathrm{M}^{+}\right](0.5), 309(2.4), 296$ (4.5), 279 (2.1), 264 (2.1), 254 (10.1), 253 (5.1), 252 (24.6), 251 (10.9), $250(34.3), 239(24.5), 222(2.8) 210(1.2)$. Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{3}$: 325.2669 . Found: 325.2643.
dI-threo-Triacetylsphingosine (25). To a solution of 0.015 g (0.046 mmol) of oxazolone 34 in glyme (1.5 mL) and water (1 mL) was added ($0.037 \mathrm{~g}, 0.115 \mathrm{mmol}$) of barium hydroxide octahydrate, and the mixture was refluxed under nitrogen for 36 h . The mixture was cooled to room temperature and was saturated with CO_{2} gas to precipitate the barium salts. Filtration of the inorganic salts and concentration of the filtrate in vacuo afforded $d l$-threo-sphingosine (25). This material was dissolved
in 1 mL of acetic anhydride and 1 mL of pyridine, and the solution was stirred for 6 h at room temperature. Evaporation of the solvent in vacuo and purification of the residue by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / 9 / 1\right)$ gave dl-threo-triacetylsphingosine ($26,14.1 \mathrm{mg}, 72 \%$) as a white solid. A sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane had a melting point of 68 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{26} \mathrm{mp} 69-71{ }^{\circ} \mathrm{C}$): IR (KBr) $3300,2940,2860,1750,1660,1550$, $1460,1430,1370,1230,1050,970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$ $\delta 0.85(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 22 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 2 \mathrm{H})$.

Ethyl Octadeca-2 $(E), 4(Z)$-dien-1-oate (37). To a solution of ethynylmagnesium bromide (25 mmol) in THF (15 mL) at $0^{\circ} \mathrm{C}$ was added freshly distilled n-tetradecanal ($4.20 \mathrm{~g}, 19 \mathrm{mmol}$) under an atmosphere of acetylene. The mixture was stirred at room temperature overnight, poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ether (3×40 mL). The organic phase was dried and concentrated in vacuo. The residue was distilled affording alcohol $35(3.3 \mathrm{~g}, 70 \%)$ as a colorless oil: bp $135^{\circ} \mathrm{C}$ (0.1 torr); IR (film) $3600-3100$ (br), 2940, 2850, 2125, 1460 , $1380,1040,720,660,630 \mathrm{~cm}^{-1}$

A mixture of alcohol $35(3.0 \mathrm{~g}, 12 \mathrm{mmol})$, triethyl orthoacetate (15 $\mathrm{mL}, 83 \mathrm{mmol}$) and 6 drops of propionic acid was heated at $150^{\circ} \mathrm{C}$ for 35 h while ethanol was removed by slow distillation. The reaction mixture was concentrated in vacuo, and the residue was distilled to afford allenes $36(2.3 \mathrm{~g}, 60 \%)$ as a colorless oil: bp $160^{\circ} \mathrm{C}$ (0.05 torr); IR (film) $2940,2850,1970,1740,1640,1470,1370,1240,1160,1050,950,870$, $720 \mathrm{~cm}^{-1}$.

A solution of allenic esters $36(2.0 \mathrm{~g}, 6.5 \mathrm{mmol})$ in benzene was refluxed in the presence of $200-300$ mesh Woelm basic alumina (3 g) for $2.5 \mathrm{~h} .{ }^{26}$ The mixture was cooled and was filtered. Concentration of the filtrate in vacuo and purification of the residue by preparative TLC (5\% ethyl acetate/hexane) afforded diene ester 37 ($1.2 \mathrm{~g}, 60 \%$) as a colorless oil: IR (film) 2940, 2850, 1720, 1640, 1600, 1460, 1410, 1370, 1300, 1270, 1180, 1140, 1100, 1040, 990, 960, 870, $710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 20 \mathrm{H}), 1.29(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{br} \mathrm{q}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.85(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (ddd, $J=1.1,11.7$, $15.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Octadeca-2($\boldsymbol{E}), \mathbf{4}(\boldsymbol{Z})$-dien-1-ol (38). To a suspension of LiAlH_{4} $(0.066 \mathrm{~g}, 1.74 \mathrm{mmol})$ in anhydrous ether (20 mL) was added ester 37 $(0.700 \mathrm{~g}, 2.27 \mathrm{mmol})$ in ether (6 mL), and the mixture was stirred for 4 h at room temperature. The reaction mixture was carefully diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL) and $5 \% \mathrm{NaOH}$ solution (3 mL). The mixture was filtered, and the filtrate was washed with brine (10 mL) and dried. Evaporation of the solvent in vacuo yielded alcohol 38 (0.507 $\mathrm{g}, 90 \%$) as a colorless oil of sufficient purity for use in the next step. IR (film) $3320,3010,2950,2925,2850,1460,1280,1050,720,610 \mathrm{~cm}^{-1}$.

Octadeca-2(E),4(Z)-dienyl Carbamate (39). This compound was prepared from alcohol 38 in 90% yield by the procedure described above for $31 .{ }^{25}$ An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane had a melting point of $90-91^{\circ} \mathrm{C}$: IR (KBr) $3425,2910,2850,1680,1610$, $1460,1410,1340,1050,990,950,780,710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 360$ $\mathrm{MHz}) \delta 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 20 \mathrm{H}), 1.38(\mathrm{br}, 2 \mathrm{H}), 2.18$ (m, 2 H$), 4.63$ (br d, 4 H$), 5.52(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{t}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.58 (ddd, $J=1.1,11.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.67,27.82,29.25,29.34,29.50,29.59,29.65,31.91$, $65.65,126.36,127.25,129.66,134.34,156.60$; mass spectrum m / z (relative intensity) 310 (1.77) $\left[\mathrm{M}^{+}+1\right], 309(8.9)\left[\mathrm{M}^{+}\right], 267(1.3), 266$ (7.0), 250 (5.8), 249 (3.8), 248 (8.9), 222 (7.8), 194 (3.3), 180 (2.9), 166 (2.1), 152 (2.3), 138 (3.1), 137 (3.9), 135 (5.7) 127 (3.9), 124 (5.3), 123 (7.5), 121 (9.2), 109 (14.6), 96 (38.2), 80 (67.2), 67 (62.0), 55 (64.9). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{2}: \mathrm{C}, 73.60 ; \mathrm{H}, 11.06$. Found: $\mathrm{C}, 73.56 ; \mathrm{H}$, 11.24.

4-[(1,1-Dimethylethyl)dimethylsilyloxy]but-2-yn-1-al (42). To a solution of alcohol $41^{28}(1.50 \mathrm{~g}, 7.48 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added barium manganate $(9.00 \mathrm{~g}, 37.4 \mathrm{mmol})$, and the mixture was stirred at room temperature for 3.5 h . Filtration of the mixture through a pad of Celite and evaporation of the filtrate in vacuo gave aldehyde $\mathbf{4 2}$ $(1.40 \mathrm{~g}, 95 \%)$ as an oil. The unstable aldehyde was used in the next step without purification: IR (film) 2960, 2940, 2900, 2860, 2260, 2170, $1680,1460,1380,1360,1250,1130,1090,1070,1000,950,830,780$, $720,660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 60 \mathrm{MHz}\right) \delta 0.1(\mathrm{~s}, 6 \mathrm{H}), 0.8(\mathrm{~s}, 9 \mathrm{H})$, 4.4 (s, 2 H), 9.1 (s, 1 H).

Tetradecyltriphenylphosphonium Bromide (43). A mixture of triphenylphosphine ($8.51 \mathrm{~g}, 0.032 \mathrm{mmol}$) and 1 -bromotetradecane (10.00 $\mathrm{g}, 0.036 \mathrm{~mL}$) was heated at $140^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was cooled, and tetradecyltriphenylphosphonium bromide (43) was crystallized from acetone/ether ($17.00 \mathrm{~g}, 92 \%$): $\mathrm{mp} 96-98^{\circ} \mathrm{C}$; IR (CHCl_{3}) 3060, 2925, 2850, 1590, 1480, 1460, 1440, 1240-1200, 1110, 1000, 640 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}$, $11 \mathrm{H}), 1.23(\mathrm{~s}, 11 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.91(\mathrm{~m}, 15$
H). Anal. Caled for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{BrP}: \mathrm{C}, 71.23 ; \mathrm{H}, 8.21$. Found: $\mathrm{C}, 71.54$; H, 8.11.

Octadeca-4 (E)-en-2-yn-1-ol (44). To a solution of tetradecyltriphenylphosphonium bromide (43) ($3.90 \mathrm{~g}, 7.21 \mathrm{mmol}$) in anhydrous THF (25 mL) at $-78^{\circ} \mathrm{C}$ was added $1.55 \mathrm{M} n$-butyllithium in hexane (5.1 mL , 7.95 mmol). The mixture was stirred for 1.5 h at $-30^{\circ} \mathrm{C}$. The or-ange-red reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and aldehyde 42 (1.1 $\mathrm{g}, 5.54 \mathrm{mmol}$) in anhydrous THF (25 mL) was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$, and $1.55 \mathrm{M} n$-butyllithium in hexane $(5.1 \mathrm{~mL}$, 7.95 mmol) was added. The resulting dark red solution was stirred at $-30^{\circ} \mathrm{C}$ for 1 h and was diluted with ether (10 mL) and methanol (3 mL). The resulting solution was stirred for 3 h at room temperature; 3.5 N HCl was added until pH 4 was reached, and the mixture was stirred for 22 h . The reaction mixture was diluted with water and extracted with ether ($3 \times 40 \mathrm{~mL}$). The organic phase was dried and concentrated in vacuo. Purification of the crude product by flash chromatography (20% ethyl acetate/hexane) yielded alcohol $44(0.98 \mathrm{~g}, 75 \%)$ as a white solid. An analytical sample recrystallized from hexane had a melting point of $64-66^{\circ} \mathrm{C}: \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3620,2940,2860,2220,1460,1380,1160,1010$, $960 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26$ $(\mathrm{s}, 18 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 4.38$ (dd, $J=1.6,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $5.49(\mathrm{dd}, J=1.7 \mathrm{~Hz}, 15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ $(J=7.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.06,22.65,28.63,29.06$, $29.32,29.45,29.54,29.62,31.90,33.02,51.60,84.62,85.57,108.74$, 145.80; CI MS $((\mathrm{M}+1) / z) 265,264,263,247,246$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}: \mathrm{C}, 81.55 ; \mathrm{H}, 12.19$. Found: C, $81.75 ; \mathrm{H}, 12.03$.
Octadeca-2 $(Z), 4(E)$-dien-1-ol (45). A mixture of propargyl alcohol $44(0.850 \mathrm{~g}, 3.21 \mathrm{mmol})$, dry toluene (25 mL), and Lindlar catalyst $(0.100 \mathrm{~g})$ was stirred at room temperature under an atmosphere of hydrogen until TLC indicated the disappearance of the starting material $(\sim 3 \mathrm{~h})$. The reaction mixture was filtered through a Celite pad, and the filtrate was concentrated in vacuo. The crude product was purified by flash chromatography (20% ethyl acetate/hexane) to yield alcohol 45 $(0.710 \mathrm{~g}, 83 \%)$ as a colorless oil: IR (film) 3350 (br), 3025, 2940, 2850, $1460,1260,1040,740,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 22 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~m}, 1 \mathrm{H}) 6.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13}, \mathrm{c}$ NMR (CDCl_{3}) $\delta 14.09,22.67,29.19,29.23,29.34,29.49,29.59,29.66$, $31.91,32.85,58.83,124.73,127.01,131.34,137.63$.

Octadeca-2 $(\boldsymbol{Z}), 4(\boldsymbol{E})$-dienyl Carbamate (46). This compound was prepared from alcohol 45 in 85% yield by the procedure described above for 31. An analytical sample recrystallized from hexane had a melting point of $78-81^{\circ} \mathrm{C}$: IR (KBr) 3440, 3340, 3260, 3210, 3010, 2920, 2850, $1690,1610,1460,1420,1410,1070,960,680,620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 20 \mathrm{H}), 1.37(\mathrm{~m}, 2$ H), $2.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.59\left(\mathrm{NH}_{2}\right), 4.73(\mathrm{dd}, J=1.2,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.67,29.12,29.22,29.34,29.47$, $29.58,29.64,31.90,32.84,61.11,121.90,124.55,133.13,138.46,156.82$; mass spectrum m / z (relative intensity) $310\left[\mathrm{M}^{+}+1\right](0.4), 309\left[\mathrm{M}^{+}\right]$ (2.1), 260 (2.0), 250 (18.6), 222 (6.2), 211 (2.3), 194 (3.5), 180 (3.2), 166 (2.9), 152 (3.8), 138 (6.7), 137 (6.8), $124(10.8), 123(11.5), 109$ (20.0), 96 (59.4). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}: \mathrm{C}, 73.60 ; \mathrm{H}, 11.06$. Found: C, 73.98; H, 11.34.

Cycloaddition of Carbamate 46. To a solution of carbamate $\mathbf{4 6}$ (0.257 $\mathrm{g}, 0.83 \mathrm{mmol}$) and pyridine ($0.27 \mathrm{~mL}, 3.32 \mathrm{mmol}$) in anhydrous toluene (70 mL) at $-5^{\circ} \mathrm{C}$ was added thionyl chloride ($0.10 \mathrm{~mL}, 1.25 \mathrm{mmol}$) in toluene (5 mL) over a period of 2.5 h . The mixture was stirred at $-5^{\circ} \mathrm{C}$ for 2 h and at room temperature for 90 h . Pyridinium hydrochloride was removed by filtration, and the filtrate was concentrated in vacuo. Flash chromatography of the crude product ($1 / 1$ ethyl acetate/hexane) yielded dihydrothiazine oxide $47(0.250 \mathrm{~g}, 86 \%)$ as a white crystalline solid. An analytical sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane had a melting point of $84-86^{\circ} \mathrm{C}$: IR (KBr) $3075,2960,2940,2850,1780,1460,1380,1330$, 1230, 1210, 1150, 1090, 1050, 990, 820, 800, $740,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.39(\mathrm{~s}, 18 \mathrm{H})$, $1.54-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.75$ (m, 1 H$), 5.69$ (td, $J=1.75,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.66,26.25,29.26,29.33,29.45,29.57,30.02,30.89$, $31.90,46.95,57.77,69.18,122.56,124.44,153.76$; CI MS ($(\mathrm{M}+1) / z)$ $358,357,356$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.47 ; \mathrm{H}, 9.37$. Found: C, 64.18; H, 9.35.
(干)-[$\left.R^{*}, R^{*}-(E)\right]$ 4-(1-Hydroxy-2-hexadecenyl)-2-oxazolidinone (34). The allylic sulfoxide was prepared from thiazine oxide 47 by the usual procedure: IR (film) 3200, 3050, 2940, 2850, 1760, 1460, 1440, 1390 , $1230,1090,1030,740,690 \mathrm{~cm}^{-1}$.

Oxazolone 48 was prepared from the crude sulfoxide (86% overall yield from 47) by the procedure described above for oxazolone 34. The crude product was purified by preparative TLC ($1 / 1$ ethyl acetate/ hexane). An analytical sample was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane:
$\mathrm{mp} 86-88^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3610,3450,2925,2850,1760,1460,1390$, $1220,1030,970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 22 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=7.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{NH})$, $5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.09,22.67,28.99,29.20,29.34$, $29.45,29.60,29.66,31.90,32.36,56.25,66.37,73.22,126.51,136.57$, 160.23; CIMS $((\mathrm{M}+1) / z) 328,327,326,325,324$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{3}: \mathrm{C}, 70.54 ; \mathrm{H}, 10.29$. Found: $\mathrm{C}, 70.12 ; \mathrm{H}, 10.79$.
dl-erythro-Triacetylsphingosine (28). To a solution of oxazolone 48 $(0.007 \mathrm{~g}, 0.021 \mathrm{mmol})$ in glyme (3 mL) and water (1 mL) was added barium hydroxide octahydrate ($0.017 \mathrm{~g}, 0.053 \mathrm{mmol}$). After refluxing for 30 h , the mixture was cooled to room temperature and gaseous CO_{2} was bubbled through the solution to precipitate the barium salts. Filtration of the mixture and concentration of the filtrate in vacuo afforded crude dl-erythro-spingosine (27). This material was dissolved in acetic anhydride (1 mL) and pyridine (1 mL), and the solution was stirred at
room temperature for 8 h . Concentration of the reaction mixture in vacuo and purification of the residue by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3}\right.$ / $\mathrm{MeOH} / 9 / 1$) gave dl-erythro-triacetylsphingosine (28) which was identical (TLC, IR, ${ }^{1} \mathrm{H}$ NMR) with material prepared from naturally derived erythro-D-sphingosine. ${ }^{31}$ A sample recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane had $\mathrm{mp} 90-92^{\circ} \mathrm{C}$ (lit. ${ }^{26} \mathrm{mp} 91-92^{\circ} \mathrm{C}$).

Acknowledgment. We thank the National Science Foundation for support of this research (CHE-81-00132). We are grateful to Professors Clayton Heathcock and Clark Still for important discussions about this research. S.M.W. thanks the John Simon Guggenheim Memorial Foundation for a Fellowship (1983-84).
Supplementary Material Available: Complete X-ray data for compound 5a (9 pages). Ordering information is given on any current masthead page.

Stereocontrolled Synthesis of Unsaturated Vicinal Diamines from Diels-Alder Adducts of Sulfur Dioxide Bis(imides)

Hideaki Natsugari, Robert R. Whittle, and Steven M. Weinreb*
Contribution from the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802. Received January 23, 1984. Revised Manuscript Received May 29, 1984

Abstract

As an extension of methodology previously developed for the synthesis of vicinal amino alcohols, stereocontrolled synthesis of unsaturated vicinal diamines from Diels-Alder adducts of sulfur dioxide bis(imides) (1a, 1b) and various 1,3 -dienes was investigated. The 3,6 -dihydrothiazin- 1 -imine Diels-Alder adducts having a trans relationship of the sulfur and C-6 substituents stereospecifically afforded unsaturated vicinal diamines in high yields via ring opening with phenylmagnesium bromide to allylic sulfilimines which underwent [2,3]-sigmatropic rearrangement to sulfenamides. Desulfurization of the sulfenamide with trimethyl phosphite afforded (E)-threo diamines 11 and 12 from the Diels-Alder adducts of (E, E)-hexadiene 4 and 6 , respectively, and (E)-erythro diamines 18 and 19 from the adducts of (E, Z)-hexadiene 7 and 9 , respectively. In contrast, the epimeric thiazinimines 3 and 10, having a cis relationship of the sulfur and C-6 substituents, were relatively unreactive toward carbon nucleophiles, affording the expected diamine derivatives in only fair to poor yields. However, the "unreactive" cis-thiazin-1-imines $\mathbf{3}, \mathbf{5}$, $\mathbf{8}$, and 10 were found to undergo a facile thermal $[2,3]$-sigmatropic rearrangement to give thiadiazolidines $21,22,23$, and 24, respectively, which were converted to the desired unsaturated diamine derivatives $11,12,18$, and 19 by sodium borohydride reduction in excellent yields. The reactivities of the Diels-Alder adducts are explained on the basis of the stereostructures of the Diels-Alder adducts, which were unambiguously determined by single-crystal X-ray analyses and ${ }^{1} \mathrm{H}$ NMR lanthanide induced shift studies. The Diels-Alder reaction of 1,3 -cyclohexadiene and bis(imide) $\mathbf{1 b}$ was investigated, leading to cis-vicinal carbamate 33 in a good yield along with the interesting amino diene derivative 32 .

Recent publications from these laboratories have described a diastereoselective approach to synthesis of unsaturated amino alcohol derivatives based upon Diels-Alder adducts of N-sulfinyl dienophiles. ${ }^{1}$ We now report an extension of this general methodology to preparation of unsaturated vicinal diamines which allows total control of both relative and double bond configuration. The strategy outlined in this paper centers upon the propensity of readily available bis(imides) of sulfur dioxide $\mathbf{1 a , b}$ to react with 1,3-dienes in Diels-Alder fashion ${ }^{2}$ to produce 3,6 -dihydro-thiazin-1-imines (2) (Scheme I). ${ }^{3}$ Although this type of cyclo-

[^6]Scheme I

addition has been known for a number of years, subsequent chemistry of adducts such as $\mathbf{2}$ has received scant attention.
Since one of the primary objectives of this research program has been to develop diastereoselective routes to acyclic molecules, we have concentrated on developing the methodology with adducts of acyclic 1,3 -dienes. Thus, bis(sulfonimide) 1a, prepared in situ from disproportionation of N-sulfinyl- p-toluenesulfonamide as described by Kresze, ${ }^{5}$ added to (E, E)-2,4-hexadiene at room temperature in benzene gives a chromatographically separable mixture of adducts 3 and $\mathbf{4}(91 \%)$ in a 1.1:1 ratio. Interestingly, Mock and Nugent ${ }^{6}$ observed a very different ratio of $\mathbf{3}$ and 4 in

[^7]
[^0]: (1) Wichterle, O.; Rocek, J. Chem. Listy 1953, 47, 1768. Wichterle, O.; Rocek, J. Collect. Czech. Chem. Commun. 1954, 19, 282.
 (2) For reviews see: (a) Kresze, G.; Wucherpfennig, W. Angew. Chem., Int. Ed. Engl. 1967, 6, 49. (b) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087.
 (3) Mock, W. L.; Nugent, R. M. J. Am. Chem. Soc. 1975, 97, 6521, 6526.
 (4) Weinreb, S. M.; Garigipati, R. S.; Gainor, J. A. Heterocycles 1983, 21, 309.
 (5) Levin, J. I.; Weinreb, S. M. J. Am. Chem. Soc. 1983, $105,1397$.
 (6) (a) Weinreb, S. M.; Khatri, N. A.; Shringarpure, J. J. Am. Chem. Soc. 1979, 101, 5073. (b) Schmitthenner, H. F.; Weinreb, S. M. J. Org. Chem. 1980, 45, 3372. (c) Khatri, N. A.; Schmitthenner, H. F.; Shringapure, J.; Weinreb, S. M. J. Am. Chem. Soc. 1981, 103, 6397. (d) Gobao, R. A.; Bremmer, M. L.; Weinreb, S. M. J. Am. Chem. Soc. 1982, 104, 7065. (e) Bremmer, M. L.; Weinreb, S. M. Tetrahedron Lett. 1983, 24, 261. (f) Bremmer, M. L.; Khatri, N. A.; Weinreb, S. M. J. Org. Chem. 1983, 48, 3661.
 (7) Garigipati, R. S.; Morton, J. A.; Weinreb, S. M. Tetrahedron Lett. 1983, 24, 987.

[^1]: (13) Kirby, A. J. "The Anomeric Effect and Related Stereochemical Effects at Oxygen"; Springer-Verlag: New York, 1983.
 (14) Johnson, F. Chem. Rev. 1968, 68, 375.
 (15) It appears that the resonances of the $\mathrm{C}-3$ and $\mathrm{C}-6$ hydrogen substituents of $\mathbf{5 b}$ have been assigned incorrectly ${ }^{3}$ and should be reversed.
 (16) Remiszewski, S. W.; Whittle, R. R.; Weinreb, S. M. J. Org. Chem. 1984, 49, 3243.
 (17) Natsugari, H.; Whittle, R. R.; Weinreb, S. M. J. Am. Chem. Soc., following paper in this issue.

[^2]: (18) Wucherpfennig, W. Liebigs Ann. Chem. 1971, 761, 16.
 (19) Evans, D. A.; Andrews, G. C. Acc. Chem. Ref. 1974, 7, 147. Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1979, 18, 563.

[^3]: (20) Cf: Miller, J. G.; Kurz, W.; Untch, K. G.; Stork, G. J. Am. Chem. Soc. 1974, 96, 6774.
 (21) Lowry, T. H.; Richardson, K. S. "Mechanism and Theory in Organic Chemistry"; Harper and Row: New York, 1976; pp 194-203.
 (22) Hori, T.; Singer, S. P.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1456.
 (23) Kim, M. Y.; Starrett, J. E.; Weinreb, S. M. J. Org. Chem. 1981, 46, 5383.

[^4]: (24) For other syntheses, see: (a) Shapiro, D. "Chemistry of Sphingolipids"; Hermann: Paris, France, 1969. (b) Newman, H. J. Am. Chem. Soc. 1973, 95, 4098. (c) Tkaczak, P.; Thorton, E. R. J. Org. Chem. 1981, 46, 4393. (d) Schmidt, R. R.; Klager, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 210. (e) Bernet, B.; Vasella, A. Tetrahedron Lett. 1983, 24, 5491.
 (25) Loev, B.; Kormendy, M. R. J. Org. Chem. 1963, 28, 3421.
 (26) Grob, C. A.; Gadient, F. Helv. Chim. Acta 1957, $40,1145$.
 (27) Tsuboi, S.; Masuda, T.; Takeda, A. J. Org. Chem. 1982, 47, 4478.

[^5]: (28) Motto, M. G.; Sheves, M.; Tsujimoto, K.; Balogh-Nair, V.; Nakanishi, K. J. Am. Chem. Soc. 1980, 102, 7947. These workers converted 41 to 42 in 69% yield with MnO_{2}.
 (29) Firouzabadi, H.; Ghaderi, E. Tetrahedron Lett. 1978, 839.
 (30) Bosshardt, H.; Schlosser, M. Helv. Chim. Acta 1980, 63, 2393.
 (31) D-erythro-Spingosine was obtained from Sigma Chemical Co.

[^6]: (1) (a) Garigipati, R. S.; Weinreb, S. M. J. Am. Chem. Soc. 1983, I05, 4499. (b) Garigipati, R. S.; Freyer, A. J.; Whittle, R. R.; Weinreb, S. M. J. Am. Chem. Soc., preceding paper in this issue.
 (2) For reviews of this type of cycloaddition, see: Kresze, G.; Wucherpfennig, W. Angew. Chem., Int. Ed. Engl. 1967, 6, 49. Weinreb, S. M.; Staib, R. R. Tetrahedron, 1982, 38, 3087.
 (3) It should be noted that a conceptually similar approach to vicinal diamines has been briefly described (Sharpless, K. B.; Singer, S. P. J. Org. Chem. 1976, 41, 2504) based upon Diels-Alder chemistry of a bis(sulfonimide) of selenium. However, these authors did not investigate the stereochemistry of the process, and yields were not impressive in the examples reported.
 (4) For other routes to vicinal diamines, see: Gasc, M. B.; Lattes, A.; Perie, J. J. Tetrahedron 1983, 39, 703. Kohn, H.; Jung, S.-H. J. Am. Chem. Soc. 1983, 105, 4106 and references cited in these articles. See also: Fraenkel, G.; Pramanik, P. J. Org. Chem. 1984, 49, 1316. Jung, S.-H.; Kohn, H. Tetrahedron Lett. 1984, 25, 399.

[^7]: (5) Wucherpfennig, W.; Kresze, G. Tetrahedron Lett. 1966, 1671.

